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SUMMARY

In this paper, Navier–Stokes fluid flows in curved channels are considered. Upstream of the backward-
facing step, there exists a channel with a 90° bend and a fixed curvature of 2.5. The purpose of
conducting this study was to apply a finite element code to study the effect of the distorted upstream
velocity profile developing over the bend on laminar expansion flows behind the step. The size of the
eddies formed downstream of the step is addressed. The present work employs primitive velocities, which
stagger the pressure working variable, to assure satisfaction of the inf–sup stability condition. In
quadratic elements, spatial derivatives are approximated within the consistent Petrov–Galerkin finite
element framework. Use of this method aids stability in the sense that artificial damping is solely added
to the direction parallel to the flow direction. Through analytical testing, in conjunction with two other
benchmark tests, the integrity of applying the computer code in quadratic elements is verified. Copyright
© 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Fluid flows in channels with flow reversals find many industrial applications. Typical examples
are the flows in heat exchangers and ducts for industrial use, flows around buildings, and
microelectric circuit boards. Among this class of flow problems, a channel with a backward-
facing step is regarded as having the simplest geometry while retaining rich flow physics
manifested by the flow separation, flow reattachment and multiple recirculation bubbles in the
channel. The above explains why expansion of a flow over a step has received a lot of attention
in the literature and was selected for a benchmark study in this article.

Numerical prediction of flows in a backward-facing step has been the subject of intensive
study over the last few decades. Much of the previous work has been directed towards studying
the effects of the Reynolds number [1,2] and the expansion ratio on the flow development
behind the step. Comparatively few studies have addressed the influence of the inlet flow on
the downstream flow development in the channel [3,4]. This has prompted the current research
into deepening the understanding about expansion flow behind a backward-facing step. We
restrict ourselves to examining laminar flows to avoid the complication involved in applying
turbulence models to equations of motion.

* Correspondence to: Department of Naval Architecture and Ocean Engineering, National Taiwan University, 73
Chow-Shan Road, Taipei, Taiwan, Republic of China. Fax: +886 2 23929885; e-mail: sheu@indy.na.ntu.edu.tw

CCC 0271–2091/99/241297–14$17.50
Copyright © 1999 John Wiley & Sons, Ltd.

Recei6ed February 1998
Re6ised December 1999



T.W.H. SHEU AND S.F. TSAI1298

Only recently has the advent of powerful computational environments and the rapidly
declining cost-to-performance ratio of computer hardware made possible the numerical study
of Navier–Stokes fluid flows. Despite several decades of numerical experience, many obstacles
still remain in obtaining a highly accurate flow simulation. Consideration will be given to the
implementation of the outflow boundary condition and to approximation of equation non-
linearities.

In this paper, Section 2 presents a closure problem for the incompressible viscous fluid flow.
Section 3 presents a discretization method that falls into the weighted residuals framework. An
attribute of this upwind model is that both the pressure gradient and diffusive fluxes are
weighted in favor of the upwind side. Attempts to better understand the proposed finite
element model have prompted us to conduct a more theoretically appealing study. To achieve
this goal, we conduct modified equation analysis on the linearized momentum as well as on the
continuity equations. We will close the inflow–outflow problem by devising a free boundary
condition. Section 4 tests the validity of the computer code against the analytical problem used
for the study of incompressible flows. Then, a backward-facing step problem, a curved flow
problem with a 90° bend, and a channel flow problem with a bend and a step are analyzed.
Finally, Section 5 offers conclusions.

2. MODEL EQUATIONS

Newtonian fluids that are subject to the incompressibility constraint condition are considered.
The Navier–Stokes equations along with the divergence-free constraint equation constitute the
working equations. For convenience of analysis, these equations are cast in the following
dimensionless form:

u6 ·9u6 = −9p+
1

Re
92u6 , (1)

9 ·u6 =0. (2)

In the above elliptical–differential system, Re=u0L/n denotes the Reynolds number, L is the
characteristic length, u0 is the characteristic velocity, and n is the kinematic viscosity of the
fluid. Applied to incompressible fluid flows, the above velocity–pressure formulation has been
proven to be desirable because this variable setting accommodates closure conditions [5,6].

To complete the specification of the elliptical problem, it is necessary that boundary
conditions are prescribed on the boundary of the physical domain. For this reason, either
velocities at GD,

u6 =g6 , (3)

or the Neumann-type boundary condition on the open boundary GN, are specified, with a unit
outward normal vector n6 ,

−pn6 + 1
Re
(u6
(n

= ftraction. (4)
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3. THEORETICAL FORMULATION

Having reached a high degree of mathematical sophistication, finite element methods (FEM)
are now the typical numerical technique of choice. Among the formulations, the present
authors are in favor of the mixed formulation for use in the present study of incompressible
fluid flow. The main reason making the mixed formulation appealing to use is that the
kinematic constraint of a divergence-free vector field is unconditionally ensured.

The variational statement characterizing the conservation equations (1) and (2) is as follows:
For an admissive function w6 �H0

1(V)×H0
1(V) and a pressure mode q�L2(V)/R=P, find weak

solutions for velocity–pressure (u6 , p)�V
 (H0
1×H 0

1)×P from the following equations:&
V

(u6 ·9u6 ) ·w6 dx6 + 1
Re

&
V

9u6 : 9w6 dx6 +&
V

p9 ·w6 dx6 =&
V

f ·w6 dx6 , Ö w6 �H, (5)

&
V

(9 ·u6 )q dx6 =0, Ö q�P. (6)

3.1. Quadratic streamline upwind Petro6–Galerkin (SUPG) finite element model

In circumstances when convection largely dominated its diffusion counterpart, employment
of an upwind model is essential to compensate for the potential loss of numerical stability. In
this study, the Petrov–Galerkin method is adopted, where the test functions w6 used in
Equation (5) are regarded as upwind-weighted refinements to the basis functions. This
upwinding procedure, while providing non-oscillatory velocities, may cause the prediction
accuracy to deteriorate owing to false diffusion errors added to the formulation [7,8]. Such
cross-wind diffusion errors are particularly pronounced in cases when grid lines and flow
directions are not in a good alignment. To alleviate the degree of obscured real physics for
problems under these circumstances, a flow-oriented upwind model is adopted as a remedy to
stabilize the discrete equation without the cost of deteriorating the prediction accuracy along
the flow direction. Attempts to improve solution accuracy motivated the use of higher-order
elements. In what follows, the analysis is performed in a domain covered by quadratic
elements.

The key to suppressing oscillatory pressures is the appropriate selection of finite elements.
To avoid oscillatory modes contaminating the solution, it is necessary that finite elements must
satisfy the inf–sup stability condition [9,10]. In order for the predicted solutions to be smooth,
the shape functions for N(x6 ) (for the velocity vector) and M(x6 ) (for the pressure) are chosen
to be biquadratic and bilinear polynomials respectively. By substituting the chosen test and
basis equations into Equations (5) and (6), the finite element matrix equations can be derived.
The resulting matrix equation is

Ã
Ã

Ã

Ã

Ã

Æ

È

&
Vh

Í
Ã

Ã

Ã

Ã

Á

Ä

Cij

0

Mi (N
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Mi (N
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−M j (N
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=06 , (7)

where
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Bi=tN jV0 k
j (N

i

(xk

,

and

Cij= (Ni+Bi)N jV0 k
j (N

j

(xk

+
1

Re
(Ni

(xk

(N j

(xk

−
1

Re
Bi (

2N j

(xk (xk

. (8)

It is sufficient to state that V0 k
j are assumed to be constants when formulating the matrices.

These values are evaluated through a simple arithmetic mean using the two most updated
velocities. Having derived the above indefinite and unsymmetric matrix equations, it is
necessary to define t to complete the finite element formulation. Depending on the nodal
classification, t can be derived as

t(gj)=
!a(h rl, gl);

b(g);
at end-nodes
at center-nodes

, (9)

where

a(hrl, gl)= [− (hrl+hrlgl) e−2gl+4(2hrl+hrlgl) e−gl−7(hrl+1)+4(2−hrlgl) ehrlgl

− (1−hrlgl) e2hrlgl]

/[− (6hrl−hrlgl) e−2gl+4(3hrl−2hrlgl) e−gl+14hrlgl+6(−hrl+1)

−4(3+2hrlgl) ehrlgl+ (6+hrlgl) e2hrlgl], (10)

b(g)=
1
2

coth
�g

2
�

−
1
g

,

hrl=hr/hl,

gl=uehl Re/2,

g=uch Re/2.

For the sake of completeness, Figure 1 plots the value of t against the Peclet numbers in the
uniform grid limiting case. As is evident from Equations (9) and (10), the formulation
generalizes the scheme of Donea on uniform grids [11],

tDonea(g)=Í
Ã

Ã

Á

Ä

aDonea(g)=
2−cosh(g)−

4
7

tanh
�g

2
�

+
1
g

sinh(g)

4 tanh
�g

2
�

−sinh(g)−
6
g

sinh(g) tanh
�g

2
� ;

b(g)=
1
2

coth
�g

2
�

−
1
g

;

at end-nodes,

at center-nodes.

(11)

3.2. Fundamental study of the finite element model

Much of the intricate detail of the finite element model can be inferred from the modified
equation analysis. In this light, we are motivated to conduct this analysis by use of the
MAPLE [12] to get rid of much of the algebraic complexities in the modified equation analysis
conducted on biquadratic finite elements. Following the standard procedure in conducting the
modified equation analysis, the modified continuity equation is obtained as
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Figure 1. The values of t, as given in Equations (9) and (10), against Peclet numbers for the proposed upwind finite
element model.

ux+6y= −
�h2

3
uxxx+

h2

3
uxyy+

h4

20
uxxxxx+

h4

9
uxxxyy+

h4

36
uxyyyy

�
−
�h2

3
6xxy+

h2

3
6yyy+

h4

36
6xxxxy+

h4

9
6xxyyy+

h4

20
6yyyyy

�
+O(h6). (12)

To this point we have shown evidence which reveals that Equation (12) approaches the desired
divergence-free state with an order of O(h2).

A Taylor series expansion is similarly applied to linearized momentum equations, resulting
in their differential counterparts. At the representative node, marked with a 	 in Figure 2, the
modified equations for the x and y momentum equations are obtained respectively as

Figure 2. An illustration of four basic elements for the point labeled with 	 in a quadratic element.
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aux+buy+px−
1

Re
(uxx+uyy)− f1= (a2+b2)tuss+Du+Pu, (13)

a6x+b6y+py−
1

Re
(6xx+6yy)− f2= (a2+b2)t6ss+D6+P6. (14)

In the above two equations, the subscript s denotes the streamline direction. The discretization
errors for the flux terms, Du and D6, and pressure gradients, Pu and P6, are summarized in
Tables I and II respectively. In the light of Equations (13) and (14), the conclusion is that the
scheme has been recognized as being able to stabilize the discrete equation owing to damping
terms added along the flow direction. By taking the positive velocities a and b, shown in
Equations (13) and (14), as an example, it is expected that physically relevant solutions will be
obtained provided that the value of t is positive.

Table I. Discretization errors Di (i=u, 6), as shown in Equations (13) and (14), for four types of
elements in Figure 2

uxyy or 6xyyCoefficient element uyyy or 6yyyuxxx or 6xxx uxxy or 6xxy

type

1
3

b(−9t+h2 Re)
Re

1
5

a(−5t+h2 Re)
Re

Type 1
1
5

b(−5t+h2 Re)
Re

1
3

a(−9t+h2 Re)
Re

Type 2
1
3

a(−9t+h2 Re)
Re

1
5

b(−5t+h2 Re)
Re

−
1
6

bh2−
1
10

a(10t+h2 Re)
Re

Type 3 −
1
6

ah2 −
1
10

b(10t+h2Re)
Re

1
3

b(−9t+h2 Re)
Re

1
5

a(−5t+h2 Re)
Re

−
1
6

bh2−
1
6

ah2Type 4 −
1
10

b(10t+h2 Re)
Re

−
1
10

a(10t+h2 Re)
Re

Table II. Discretization errors Pi (i=u, 6), as shown in Equations (13) and
(14), for four types of elements, as given in Figure 2

pxyypxxypxxxpyypxypxx pyyy

Equation (13)
tb 0 −2

3h2 0Type 1 0 03ta
tb 0Type 2 −2

3h2 0 −1
2h2 03ta

000−1
6h20Type 3 0 tb

tb0 −1
2h2Type 4 00−1

6h20

Equation (14)
ta 3tb 0Type 1 0 0 −2

3h20
Type 2 0 ta 0 0 0 0 −1

6h2

0Type 3 ta 3tb 0 −1
2h2 0 −2

3h2

−1
6h20−1

2h200Type 4 ta0
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3.3. Implementation of outflow boundary condition

For a closure reason, one can apply physical arguments at a solid wall or a free surface to
prescribe the boundary conditions. This is not the case for the specification of boundary
condition at the outlet because no physical reasoning is available for us to achieve this goal.
Despite years of research, the difficulty of specifying a permissible condition at the truncated
boundary has not been fully resolved. This difficulty is particularly pronounced for a
simulation that involves a solid boundary to which a boundary layer is attached. Under this
circumstance, the artificial boundary should be far away from the inlet. This helps prevent
unphysical feedback noises, emanating from the outflow boundary, from being propagated
upstream and destroying the solution. Unfortunately, the analysis domain must be truncated
somewhere; otherwise, the disk storage and computer time requirements may be greatly in
excess of that provided by computers of the day. Thus, there exists a trade-off between these
two considerations.

In this paper, the so-called free boundary condition approach is used together with the
present mixed finite element formulation [13]. There is no specification of an ad hoc stress
boundary condition at the artificial boundary. The direct consequence of applying the free
boundary condition to the finite element formulation is that the surface traction vector ftraction

is one part of the solution to be computed. It is noteworthy that the underlying boundary
condition matches the physics of fluid flows inside the domain. As a consequence, both
non-linear and diffusive fluxes in the flow can be taken into account.

4. COMPUTED RESULTS

As a first step towards the assessment of the simulation quality, we consider a problem that is
amenable to an analytical solution. With this in mind, it is preferable to consider problems
with smooth and simple flow patterns. Our argument is as follows:
If a discretization scheme fails to accurately predict a simple problem, then there must be
plenty of room for further improvement of the scheme. In the numerical simulation of smooth
flows, a good way for justifying the computer code is to cast the computed errors in their
L2-norm form. To answer whether or not the stability property is attainable, we conduct the
rate of convergence study. This study proceeds with computing finite element errors 
e1
 and

e2
 from two consecutive grids with grid sizes of h1 and h2. The rate of convergence is then
obtained as

c=
ln
e1
− ln
e2


ln�h1�− ln�h2� . (15)

The validation of the code is followed by considering an analytical problem in a square. The
domain under investigation is confirmed in 05x, y51, within which it is covered with
uniform grids. The analytical pressure is obtained as

p=
−2

(1+x)2+ (1+y)2 , (16)

provided that the boundary velocities are analytically specified as follows:

u=
−2(1+y)

(1+x)2+ (1+y)2 , (17)

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1297–1310 (1999)
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Table III. Computed errors and rates of convergent order

Mesh size 
u6 −u6 exact
 Rate of convergent 
p−pexact
 Rate of convergent
order corder c

5×5 1.374×10−3 2.404×10−3

3.757×10−4 1.87110×10 6.085×10−4 1.982
20×20 8.817×10−5 2.091 1.421×10−4 2.098
40×40 1.863×10−5 2.242 3.446×10−5 2.044

6=
2(1+x)

(1+x)2+ (1+y)2 . (18)

According to Table III, which tabulates the L2-error norms, the integrity of the fully weighted
SUPG finite element code is analytically validated.

4.1. Benchmark test—a backward facing step problem

The flow over a backward-facing step is the prototype best-suited for justifying the use of
our proposed free boundary condition at the synthetic boundary. The wide spread popularity
of this problem is attributable to two factors. First, there exists well-documented experimental
and numerical data for this problem. Second, the flow physics are far from simple, even in a
channel with simple geometry. It is the geometric simplicity of the problem that facilitates
computation, comparison among schemes, and drives our study of this problem. As seen in
Figure 3, the aspect ratio of the height of the backward-facing step, s, to the width of the
cross-sectional, H, is chosen to be s :H=1:2.

We impose at the channel inlet, which is upstream of the step with a distance of H, a fully
developed flow. No-slip conditions are imposed at solid walls. In the present study, we
consider a Reynolds number Re=800, which is obtained by considering the velocity ū=2

3Umax

and the length H as reference quantities. Our previous studies revealed that as L/s\32,
analysis data become reliable since the traction forces come fairly close to zero [13]. Results
presented here were those for a case with length L at 32.

We denote x1 as the computed reattachment length of the recirculating zone behind the step.
We also define x4 as the separation length and x5 as the reattachment length of the secondary
recirculation bubble on the roof of the channel. These values are plotted in Figure 4 and are
compared with the finite element results of Sohn [14], the finite difference results of Durst and
Pereira [2], and the experimental data of Armaly et al. [1]. The reattachment length obtained
here compares very favorable with the experimental results for smaller Reynolds number cases.
Increasing Re further causes the eddy to grow. At Re=400, the agreement of computed
reattachment lengths with those obtained from the experimental measurement breaks down in
that the flow becomes three-dimensional.

Figure 3. Backward-facing step geometry.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1297–1310 (1999)
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Figure 4. The computed reattachment lengths x1, x5 and the separation length x4 against different values of L/s.

4.2. Flow in a duct with a smooth 90° bend

There are two reasons why bend flows have received much attention in the literature. From
the physical standpoint, centrifugal force plays an essential role for a flow into a curved duct.
Such a centrifugal force causes a flow distortion to occur and the distorted velocity profile, in
turn, influences the pressure distribution. Moreover, the motion in a curved channel is
susceptible to instability when the destabilizing centrifugal force exceeds the restoring normal
pressure gradient. On computational grounds, the bend under investigation is algebraically
describable, thus simplifying mesh generation and facilitating the computation. On top of this,
plenty of well-documented data are easily accessible in the literature for conducting compari-
son studies.

How the flow develops in a curved duct depends on the radius ratio of the duct and the
Reynolds number. In this study, we simulated the flow development in a duct shown
schematically in Figure 5. The curved section is characterized as having a curvature of 2.3
[
 (ri+0.5D)/D ]. The flow under investigation had straight extension upstream and down-
stream of lengths that are five times the hydraulic diameter D (=40 mm). Based on the mean
inflow velocity, the hydraulic diameter of the duct, and the viscosity (m=1.98×10−2), the
Reynolds number was 790. This is the benchmark exercise for the experimental condition of
Humphrey et al. [15]. Flow instability caused by significant curvature effects was not reported
in the experiment. Numerical results are presented for a grid with a resolution of 128×64,
which was believed to be adequate to resolve the fine structure of this flow.

According to the computed velocity profiles plotted in Figure 6, the fluid flow in the straight
section manifests itself by the boundary layer formation and a potential core region with
blockage effects. What is most apparent in the pressure distribution plotted in Figure 7 is that

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1297–1310 (1999)
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Figure 5. An illustration of the flow in a duct with a smooth 90° bend and a constant curvature of 2.3.

the flow inside the channel evolves into acceleration in regions near the inner radius wall due
to the favorable longitudinal pressure gradient. Conversely, a slight deceleration occurs in
regions near the outer radius wall because of the adverse pressure gradient. According to
Figure 8, which plots the pressure along the inner and outer radius walls, there is evidence
referring to the outer bend as the pressure side, while the inner bend as the suction side. This
figure reveals that the pressure gradient is strongly adverse over the inner (suction) surface for
about 45°, while it is strongly favorable over the outer (pressure) bend for the same region.

Figure 6. Velocity vector plots in the curved channel and the close-up plot of streamlines in the region behind the 90°
bend.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1297–1310 (1999)
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Figure 7. The computed pressure contours in the curved channel.

One characteristic of the flow structure in the bend is that velocities of smaller magnitude are
observed in regions adjacent to the pressure surface.

As the velocity profiles plotted in Figure 6 show, the spatial location where the velocity has
a peak value moves towards the spatial location closer to the suction side of the bend.
Downstream of the bend, the streamwise velocity decelerates in regions near the suction side
of the duct. This is followed by gradual development into a fully developed flow.

4.3. Flow in a channel with a bend and a backward-facing step

Having described successfully simulations of two benchmark tests in Sections 4.1 and 4.2, we
will consider an even more difficult channel flow problem. This problem, shown in Figure 9,
involves an upstream bend of fixed curvature 2.5 and a downstream backward-facing step.
This problem is chosen to study the effect of the upstream inlet flow on the downstream flow
separation behind the step.

The underlying idea of placing a 90° bend is to construct a distorted velocity profile
upstream of the step. Our argument is that progressive development is accompanied by
acceleration of the flow in regions near the inner radius wall due to the favorable longitudinal
pressure gradient, and that, conversely, there is flow deceleration around the outer radius
region because of an adverse pressure gradient. Depending on the downstream length behind

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1297–1310 (1999)
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Figure 8. Pressure distributions along inner and outer curved walls.

Figure 9. An illustration of the problem considered in Section 4.3.

the bend, different degrees of velocity distortion become apparent. As a consequence, we vary
the length ‘Leng’, as seen in the Figure 9, and plot velocity profiles at several selected
streamwise sections in Figure 10. The resulting reattachment and separation lengths, labeled
x1, x4, x5, are tabulated in Table IV.

5. CONCLUSIONS

The main thrust of this work has been to evaluate the potential of our upwind finite element
model for the simulation of incompressible Navier–Stokes equations, subject to outflow
boundary conditions, in steady state. The basis for the method adopted here is the use of a
fully-weighted upwinding finite element model, which means that convective, diffusive and

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1297–1310 (1999)
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Figure 10. The computed velocity profiles for cases with different values of Leng. (a) Leng=1; (b) Leng=2; (c)
Leng=4; (d) Leng=8.

Table IV. Comparison of lengths x1, x4, x5, as computed on the basis of Leng=1, 2,
4, 8, with the data of Armaly et al. [1]

x1 x4 x5

14.289 11.324Armaly et al. [1] (without 90° bend duct) 19.979
Present, Leng=1 14.10091 11.81469 23.04005

14.01423 11.70018Present, Leng=2 21.99574
13.15261 10.88666Present, Leng=4 21.99574
12.40522 10.16694 20.93761Present, Leng=8
11.9119 9.80976Present (without 90° bend duct) 20.46

The length Leng is given in Figure 9.

pressure gradient terms are all biased-weighted. The proposed model is known as a streamline
upwind finite element model, as evidenced by the modified equation analysis, which has
provided insight into the method formulated in quadratic elements. The developed finite
element model has been applied to the through-flow problem, together with the use of a free
boundary condition approach. This method is featured as taking nodal values of u, 6 and p at
the outlet as unknowns, which are coupled with the interior unknowns through surface
integrals in the momentum equations. The results obtained for the steady flow case have been
analytically verified. The justification for using the proposed finite element model to simulate
channel flows has been presented further through several benchmark tests.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1297–1310 (1999)
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